Scaling, sensitivity and stability in the numerical solution of quadratic eigenvalue problems
نویسندگان
چکیده
The most common way of solving the quadratic eigenvalue problem (QEP) (λM+λD+K)x = 0 is to convert it into a linear problem (λX+Y )z = 0 of twice the dimension and solve the linear problem by the QZ algorithm or a Krylov method. In doing so, it is important to understand the influence of the linearization process on the accuracy and stability of the computed solution. We discuss these issues for three particular linearizations: the standard companion linearization and two linearizations that preserve symmetry in the problem. For illustration we employ a model QEP describing the motion of a beam simply supported at both ends and damped at the midpoint. We show that the above linearizations lead to poor numerical results for the beam problem, but that a two-parameter scaling proposed by Fan, Lin and Van Dooren cures the instabilities. We also show that half of the eigenvalues of the beam QEP are pure imaginary and are eigenvalues of the undamped problem. Our analysis makes use of recently developed theory explaining the sensitivity and stability of linearizations, the main conclusions of which are summarized. As well as arguing that scaling should routinely be used, we give guidance on how to choose a linearization and illustrate the practical value of condition numbers and backward errors.
منابع مشابه
A An Algorithm for the Complete Solution of Quadratic Eigenvalue Problems
We develop a new algorithm for the computation of all the eigenvalues and optionally the right and left eigenvectors of dense quadratic matrix polynomials. It incorporates scaling of the problem parameters prior to the computation of eigenvalues, a choice of linearization with favorable conditioning and backward stability properties, and a preprocessing step that reveals and deflates the zero a...
متن کاملA mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices
In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...
متن کاملA Backward Stable Algorithm for Quadratic Eigenvalue Problems
Quadratic eigenvalue problems (QEPs) appear in almost all vibration analysis of systems, such as buildings, circuits, acoustic structures, and so on. Conventional numerical method for QEPs is to linearize a QEP as a doublly-sized generalized eigenvalue problem (GEP), then call a backward stable algorithm to solve the GEP, for example, the QZ for dense GEP, and at last recover approximated eigen...
متن کاملA NEW APPROACH TO THE SOLUTION OF SENSITIVITY MINIMIZATION IN LINEAR STATE FEEDBACK CONTROL
In this paper, it is shown that by exploiting the explicit parametric state feedback solution, it is feasible to obtain the ultimate solution to minimum sensitivity problem. A numerical algorithm for construction of a robust state feedback in eigenvalue assignment problem for a controllable linear system is presented. By using a generalized parametric vector companion form, the problem of eigen...
متن کاملA Subspace Approximation Method for the Quadratic Eigenvalue Problem
Quadratic eigenvalue problems involving large matrices arise frequently in areas such as the vibration analysis of structures, MEMS simulation, and the solution of quadratically constrained least squares problems. The typical approach is to solve the quadratic eigenvalue problem using a mathematically equivalent linearized formulation, resulting in a doubled dimension and a lack of backward sta...
متن کامل